
A Practical Review of Uniform B-Splines
Kristin Branson

A B-spline is a convenient form for representing complicated, smooth curves. A uniform B-spline of orderk is a
piecewise orderk Bezier curve, and isCk−2-continuous (i.e. the0th through(k − 2)th derivatives are continuous). The
form of a B-spline is in general chosen because it is easy to manipulate, not because it is the solution to an optimization
problem, like smoothing splines. B-splines are particularly easy to manipulate because they have local control: parameters
of the B-spline only affect a small part of the entire spline. This review includes the details of B-splines that I find relevant
for practically understanding and implementing B-splines.

1 Bezier Curves

A Bezier curve of orderk is defined byk control points, and is a degreek − 1 polynomial. A Bezier curve is a smooth
interpolation of thesek control points. A linear Bezier curve (order 2) is a linear interpolation of its two control points,p0

andp1:
p01(s) = (1− s)p0 + sp1,

defined for0 ≤ s ≤ 1. A quadratic Bezier curve (order 3) is a linear interpolation between the linear interpolation of
control pointsp0 andp1 and the linear interpolation of control pointsp1 andp2:

p01(s) = (1− s)p0 + sp1, p11(s) = (1− s)p1 + sp2

p02(s) = (1− s)p01(s) + sp11(s)
= (1− s)[(1− s)p0 + sp1] + s[(1− s)p1 + sp2]
= (1− s)2p0 + 2s(1− s)p1 + s2p2

This method of interpolating between interpolations is called thedeCasteljau algorithm, and can be generalized to any
orderk by iterating the equation

pij = (1− s)pi,j−1 + spi+1,j−1.

Iterations must be carried out in order of increasingj, from j = 0 to k. The base case is just the control point,pi0 = pi.
For a givenj, the iterations must be carried out fori = 0, ..., k − j − 1, in any order.

Let’s see the deCasteljeau algorithm for the popular cubic Bezier curve (order 4), with control pointsp0, p1, p2, and
p3.
The linear interpolation:

p01(s) = (1− s)p0 + sp1, p11(s0 = (1− s)p1 + sp2 p21(s) = (1− s)p2 + sp3

The quadratic interpolation:

p02(s) = (1− s)p01(s) + sp11(s)
= (1− s)2p0 + 2s(1− s)p1 + s2p2

Similarly,
p12(s) = (1− s)2p1 + 2s(1− s)p2 + s2p3.

The cubic interpolation:

p03(s) = (1− s)p02(s) + sp12(s)
= (1− s)[(1− s)2p0 + 2s(1− s)p1 + s2p2] + s[(1− s)2p1 + 2s(1− s)p2 + s2p3]
= (1− s)3p0 + 3s(1− s)2p1 + 3s2(1− s)p2 + s3p3

1



A Bezier curve can be expressed in terms of basis functionsbij(s) so that

p0,k−1(s) =
k−1∑
i=0

bi,k−1(s)pi.

These basis functions are the Bernstein polynomials, defined recursively by

bij(s) = (1− s)bi,j−1(s) + sbi−1,j−1(s)

with base cases
b00(s) = 1, bij(s) = 0 if i < 0 or i > j.

We can verify this for the cubic Bezier curve:

p03(s) = b03(s)p0 + b13(s)p1 + b23(s)p2 + b33(s)p3

= [(1− s)b02(s) + sb−1,2(s)]p0 + [(1− s)b12(s) + sb02(s)]p1

+[(1− s)b22(s) + sb12(s)]p2 + [(1− s)b32(s) + sb22(s)]p3

= (1− s)b02(s)p0 + [(1− s)b12(s) + sb02(s)]p1

+[(1− s)b22(s) + sb12(s)]p2 + sb22(s)p3

= (1− s)[(1− s)b01(s) + sb−1,1(s)]p0 + {(1− s)[(1− s)b11(s) + sb01(s)] + s[(1− s)b01(s) + sb−1,1(s)]}p1

+{(1− s)[(1− s)b21(s) + sb11(s)] + s[(1− s)b11(s) + sb01(s)]}p2 + s[(1− s)b21(s) + sb11(s)]p3

= (1− s)2b01(s)p0 + [(1− s)2b11(s) + 2s(1− s)b01(s)]p1

+[2s(1− s)b11(s) + s2b01(s)]p2 + s2b11(s)p3

= (1− s)2[(1− s)b00(s) + sb−1,0(s)]p0 + {(1− s)2[(1− s)b10(s) + sb00(s)] + 2s(1− s)[(1− s)b00(s) + sb−1,0(s)]}p1

+{2s(1− s)[(1− s)b10(s) + sb00(s)] + s2[(1− s)b00(s) + sb−1,0(s)]}p2 + s2[(1− s)b10(s) + sb00(s)]p3

= (1− s)3p0 + [s(1− s)2 + 2s(1− s)2]p1 + [2s2(1− s) + s2(1− s)]p2 + s3p3

= (1− s)3p0 + 3s(1− s)2p1 + 3s2(1− s)p2 + s3p3

The closed form equation for the basis functions is:

bij(s) =
j!

i!(j − i)!
si(1− s)j−i.

This basis has some nice properties:

• Partition of unity:
j∑

i=0

bij(s) = 1, bij(s) ≥ 0

for all 0 ≤ s ≤ 1.

• Affine Invariance: any linear transformation ofpi results in a linear transformation of the Bezier curve.

• The Bezier curve is tangent to the first and last segments of the control polygon.

2 B-Splines are Piecewise Bezier Curves

A B-spline of orderk is a piecewise orderk Bezier curve, and isCk−2-continuous. Because of the continuity requirements
at each breakpoint between Bezier curve pieces, only one control point of the second Bezier curve piece is free. Thus,
L+k−1 control points defineL curve pieces for an open spline (onlyL control points are needed to defineL curve pieces
of a closed spline). We generalize the Bezier basis functions to the B-spline basis functions:

Bij(s) =
s− i

j − 1
Bi,j−1(s) +

i + j − s

j
Bi+1,j−1(s)

2



with base cases

Bi1(s) =
{

1 if i ≤ u < i + 1
0 otherwise

for i = 0, ..., L− 1. The equation for a B-spline is then

p0,k−1(s) =
L−1∑
i=0

Bi,k−1(s)pi.

For the special case of the cubic B-spline (k = 4), the basis functions are

Bi3(s) =


1
6 (s− i)3 if i ≤ s < i + 1
1
6 [−3(s− i− 1)3 + 3(s− i− 1)2 + 3(s− i− 1) + 1] if i + 1 ≤ s < i + 2
1
6 [3(s− i− 2)3 − 6(s− i− 2)2 + 4] if i + 2 ≤ s < i + 3
1
6 [1− (s− i− 3)]3 if i + 3 ≤ s < i + 4
0 otherwise

The B-spline basis functions also have some nice properties:

• Local support: Each curve piece is only a function of the four closest control points.

• The basis functions are translates of each other:

Bik(s) = B0k(s− i).

• The curve isCk−2 continuous.

• The basis functions are a partition of unity.

• Affine invariance.

3 A Convenient Representation

Because of the local support property, we can rewrite the equation for a cubic B-spline as

p(s) =
1
6

[
(1− (s− i))3pi−3 + [3(s− i)3 − 6(s− i)2 + 4]pi−2 + [−3(s− i)3 + 3(s− i)2 + 3(s− i) + 1]pi−1 + (s− i)3pi

]
,

wherei ≤ s < i + 1. A similar computation can be made for anyk. This can be written in matrix notation as

p(s) = [1 s s2 s3]Bi


pi−3

pi−2

pi−1

pi

 ,

again wherei ≤ s < i + 1. In this equation,

Bi =


− 1

6 i3 1
6 (3i3 + 3i2 − 3i + 1) − 1

2 i3 − i2 + 2
3

1
i (i + 1)3

1
2 i2 − 1

2 (3i− 1)(i + 1) 1
2 (3i2 + 4i) − 1

2 (i + 1)2
1
2 i 1

2 (3i + 1) − 1
2 (3i + 2) 1

2 (i + 1)
1
6 − 1

2
1
2 − 1

6

 .

We can also include the placement matrixGi:

p(s) = [1 s s2 s3]BiGip,

3

milkyjing
Sticky Note
1/i is actually 1/6



wherep is the vector of control points,

p =

 p0

...
pn

 .

For an open spline

Gi[m,n] =
{

1 if n = i + m− 3
0 otherwise

For a closed spline, the placement matrix is similar:

Gi[m,n] =
{

1 if n− 1 = i + m− 3− 3− 1 modL
0 otherwise

This form is convenient for taking derivatives or integrals w.r.t.s, since the only term in this equation that depends
on s is the first row vector. This simplifies calculations like computing the curve tangents and normals, or the curve area,
centroid, and variance.

4 Fitting a B-Spline to Data Points

Suppose we want to find the set of control pointsP that best interpolates a set of data points{(si,xi)}N
i=1. We use best in

the least-squares sense, i.e. we want to findP that minimizes:

h[P] =
N∑

i=1

(xi − p(si;P))2.

To solve this problem, we can write the functionp(si;P) in vector form:

P(s;P) = AsP.

It must then be thatAs is aN × L matrix such that

P(si;P) = As(i, :)P

=
L−1∑
j=0

Bj,k−1(si)pj

Thus, entryAs(i, j) = Bj−1,k−1(si). Notice that each row ofAs will be nonzero for at most four consecutive entries
(exactly four for a closed B-spline). Given this vector notation forP(si;P), we can write the optimization as

P∗ = min
P

trace[(X−AsP)>(X−AsP)].

To find the minimizingP, we can take the derivative w.r.t.P and set it to0, then solve forP. This results in

P∗ = (A>
s As)−1A>

s X.

5 Matlab Implementations

I have implemented a number of B-spline functions in Matlab. To get started with B-splines, I recommend playing with
the functioninput spline.m . This function allows the user to input a closed B-spline on top of an image. The most
interesting function called byinput spline.m is fit closed b spline.m . This function fits a closed B-spline to
the input data points, as described in Section 4. This function can be easily extended to open splines, if one wishes.

I have also implemented some basic functions for dealing with cubic, uniform B-splines. The functionsevaluate spline.m
andevaluate spline curve.m evaluate the B-spline (1D and 2D, respectively) defined by the input control points

4



at the input locations. These both use the convenient representation discussed in Section 3. TheBi andGi matrices
discussed in section 3 are created using the functionsetup cubic splines.m , which sets up the matrices for the
desired number of curve pieces. The functionsevaluate spline prime.m andevaluate normal.m compute
the tangents and normals of the B-spline at the input locations, again using the representation of Section 3. The function
transform coefs.m takes advantage of the affine invariance of the B-spline basis functions, and applies a transla-
tion, scaling, and rotation to an input B-spline. Note that the functions described in this paragraph have an interface that
allows multiple sets of control points, defining multiple B-splines, be input and evaluated at once. This is because my
implementation is designed for tracking contours using particle filtering.

[]

References
[1] S. Buss.3-D Compute Graphics. Cambridge University Press, New York, 2003.

[2] E. Demidov. An interactive introduction to splines website: http://www.ibiblio.org/e-notes/splines/intro.htm, 2004.

[3] T. Hastie, R. Tibshirani, and J. Friedman.The Elements of Statistical Learning. Springer Series in Statistics. Springer Verlag, Basel,
2001.

5


