A Practical Review of Uniform B-Splines

Kristin Branson

A B-spline is a convenient form for representing complicated, smooth curves. A uniform B-spline ofkoisler
piecewise ordek: Bezier curve, and i€'*~2-continuous (i.e. thé™ through(k — 2)" derivatives are continuous). The
form of a B-spline is in general chosen because it is easy to manipulate, not because it is the solution to an optimization
problem, like smoothing splines. B-splines are particularly easy to manipulate because they have local control: parameters
of the B-spline only affect a small part of the entire spline. This review includes the details of B-splines that | find relevant
for practically understanding and implementing B-splines.

1 Bezier Curves

A Bezier curve of ordek is defined byk control points, and is a degrée— 1 polynomial. A Bezier curve is a smooth
interpolation of thesé control points. A linear Bezier curve (order 2) is a linear interpolation of its two control pgints,
andp:

po1(s) = (1 — s)po + sp1,
defined for0 < s < 1. A quadratic Bezier curve (order 3) is a linear interpolation between the linear interpolation of
control pointspy andp; and the linear interpolation of control poinis andp.:

po1(s) = (1 — s)po + sp1, p11(s) = (1 — 8)p1 + sp2
po2(s) = (1 — s)poi(s) + sp1i(s)

(1= 8)[(1 = s)po + sp1] + s[(1 — s)p1 + sp2]
= (1-5)%po+2s(1 —s)p1 + s°p2

This method of interpolating between interpolations is calledd#€asteljau algorithmand can be generalized to any
orderk by iterating the equation

pij = (1 —8)pij—1 + 8Piy1,j-1-
Iterations must be carried out in order of increasjnérom j = 0 to k. The base case is just the control popmt, = p;.

For a giveny, the iterations must be carried out foe 0, ...,k — j — 1, in any order.
Let’s see the deCasteljeau algorithm for the popular cubic Bezier curve (order 4), with controlpointsp., and

p3-
The linear interpolation:

po1(s) = (1 — s)po + sp1, P11(50 = (1 — s)p1 + sp2 p21(s) = (1 — s)p2 + sp3
The quadratic interpolation:

po2(s) = (1—3s)poi(s)+ sp11(s)
= (1—5)%pg+2s(1 — s)p1 + s°pa
Similarly,
pr2(s) = (1 — 5)*p1 + 25(1 — s)pa + 5°p3.
The cubic interpolation:
po3(s) = (1 —s)poa(s) + spia(s)

(1= 5)[(1 = 5)%po + 25(1 — s)p1 + s°p2] + s[(1 — s)*p1 + 2s(1 — s)pa + 5°ps]
= (1- s)3po +3s(1 — 5)2p1 + 352(1 —S)p2 + $3ps

A Bezier curve can be expressed in terms of basis functigiis) so that

Po,k—1(Zblk 1

These basis functions are the Bernstein polynomials, defined recursively by

bij(s) = (1 = s)bij—1(s) + sbi—1,;-1(s)
with base cases
boo(S)Zl, bij(S):OifZ'<00ri>j.
We can verify this for the cubic Bezier curve:

po3(s) = boz(s)po + bi3(s)p1 + bas(s)p2 + b3z (s)ps
= [(1 = s)boz(s) + sb—1,2(s)]po + [(1 = $)b12(s) + sboz(s)]p1
(1 = 8)b2a(s) + sbi2(s)]p2 + [(1 — s)bsa(s) + sbaz(s)]ps
= (L= 5)bo2(s)po + [(1 — 5)br2(s) + sboz(s)]p1
+[(1 — 8)baa(s) + sb12(8)]p2 + sbaz(s)ps3
= (L=9)[(1 = 5)bo1(s) + sb—1,1(s)]po + {(1 =)[(1 = 8)b11(s) + sbor(s)] + s[(1 — s)bo1(s) + sb—1,1(s)]}p1
(L = 9)[(1 = 5)bar(s) + sbir(s)] + s[(1 — $)br1(s) + sbor(s)]}p2 + s[(1 — 5)ba1(s) + sbi1(s)]ps
= (1 —5)%bo1(s)po + [(1 = 8)*br1(s) + 25(1 — 8)bo1 (s)]p1
+[25(1 —)b11(5) + 5°bo1(s)]p2 + 57b11(s)p3
= (1—35)%[(1— s)boo(s) + sb_1,0(s)]po + {(1 — 8)2[(1 — 8)b1o(s) + sboo(s)] + 25(1 — s)[(1 — 8)boo(s) + sb_1.0(s)]}p1
+{25(1 = 5)[(1 = 5)b1o(s) + sboo(s)] + s[(1 = 5)boo(s) + sb—1,0(3)]}p2 + s*[(1 = 5)bro(s) + sboo(s)]ps
= (1—5)*pg + [s(1 —8)* +25(1 — 5)%]py + [25%(1 — 8) + s*(1 — 5)]pa + 5°p3
= (1 —5)%pg +3s(1 —s)*p1 +35%(1 — 8)pa + °p3

The closed form equation for the basis functions is:

b (s) = g (1=

This basis has some nice properties:

* Partition of unity:

forall0 < s <1.
« Affine Invariance: any linear transformationfresults in a linear transformation of the Bezier curve.

» The Bezier curve is tangent to the first and last segments of the control polygon.

2 B-Splines are Piecewise Bezier Curves

A B-spline of orderk is a piecewise order Bezier curve, and i€’*~2-continuous. Because of the continuity requirements

at each breakpoint between Bezier curve pieces, only one control point of the second Bezier curve piece is free. Thus,
L+ k —1 control points defind. curve pieces for an open spline (ordlycontrol points are needed to defiheurve pieces

of a closed spline). We generalize the Bezier basis functions to the B-spline basis functions:

§s—1 i+j—s
2B a(s) + tri—s

Bl"S:, 3
0 =3 j

Bit1,j-1(s)

with base cases)
By(s)={ 1 fisu<i+l
A= 0 otherwise

fori =0,...,L — 1. The equation for a B-spline is then

L-1
Pok-1(s) = > Bik-1(s)p;.
i=0

For the special case of the cubic B-splike= 4), the basis functions are

Lis—4)3 ifi<s<i+l1
85 —i— 1P +8(s—i— 1)2438(s—i—1)+1] fitl<s<i+2
Bis(s) = & L[3(s—i—2)% — 6(s —i—2)2+4] ifi+2<s<it3
I (s —i-3)p ifit3<s<itd
0 otherwise

The B-spline basis functions also have some nice properties:
« Local support: Each curve piece is only a function of the four closest control points.

* The basis functions are translates of each other:
sz(s) = Bok(s — Z)

The curve isC*—2 continuous.

* The basis functions are a partition of unity.

« Affine invariance.

3 A Convenient Representation

Because of the local support property, we can rewrite the equation for a cubic B-spline as

p(s) = % (1= (s —1)°pi—g + [B(s —9)> = 6(s —9)> + 4]pj—2 + [3(s — i)® + 3(s — ©)*> + 3(s — ©) + Upi—1 + (s —)°pi]

wherei < s < i+ 1. A similar computation can be made for akyThis can be written in matrix notation as
Pi-3
_ 2 3 Pi—2
p(s)=[1 s s* s°]|B; ,
Pi—1
Y2

again where < s < i + 1. In this equation,

—5i% 3313 +3i = 3i+1) fléi3fi2+§ 1(i+1)3
B, %112 f%(%z‘fl)(i+1) 5(13@'2%41‘) —1%(;41)2
6 T2 2 6

We can also include the placement matax:

milkyjing
Sticky Note
1/i is actually 1/6

wherep is the vector of control points,
Po
Pn
For an open spline

_ 1 fn=i+m-—3
Gilm,n] = { 0 otherwise

For a closed spline, the placement matrix is similar:

Gilm,n] = 1 fn—1=i+m-3-3—-1 modL
dAmni=9 9 otherwise

This form is convenient for taking derivatives or integrals wg,tsince the only term in this equation that depends
on s is the first row vector. This simplifies calculations like computing the curve tangents and normals, or the curve area,
centroid, and variance.

4 Fitting a B-Spline to Data Points

Suppose we want to find the set of control poiRtthat best interpolates a set of data poiftts;, x;) },. We use best in
the least-squares sense, i.e. we want to Brtthiat minimizes:

N

hP] = Z(X1 —p(si;P))%.

=1
To solve this problem, we can write the functipts;; P) in vector form:
P(s;P) = AP.
It must then be thal ¢ is aN x L matrix such that
P(s;P) = As(i,:)P
L—-1
= Z Bj k—1(si)p;
J=0
Thus, entryA(i,j) = B;_1,x—1(s;). Notice that each row oA will be nonzero for at most four consecutive entries
(exactly four for a closed B-spline). Given this vector notation®gs,;; P), we can write the optimization as
P* = mintrace(X — AP)T(X — A.P)].
To find the minimizingP, we can take the derivative w.rl and set it tdd, then solve folP. This results in

P*=(A]A)T'A/X.

5 Matlab Implementations

I have implemented a number of B-spline functions in Matlab. To get started with B-splines, | recommend playing with
the functioninput _spline.m . This function allows the user to input a closed B-spline on top of an image. The most
interesting function called bywput _spline.m isfit _closed _b_spline.m . This function fits a closed B-spline to
the input data points, as described in Section 4. This function can be easily extended to open splines, if one wishes.

I have also implemented some basic functions for dealing with cubic, uniform B-splines. The fuestiduaste _spline.m
andevaluate _spline _curve.m evaluate the B-spline (1D and 2D, respectively) defined by the input control points

at the input locations. These both use the convenient representation discussed in SectiorB3. amti€x; matrices
discussed in section 3 are created using the funa@&nop _cubic _splines.m , which sets up the matrices for the
desired number of curve pieces. The functiewaluate _spline _prime.m andevaluate _normal.m compute

the tangents and normals of the B-spline at the input locations, again using the representation of Section 3. The function
transform _coefs.m takes advantage of the affine invariance of the B-spline basis functions, and applies a transla-
tion, scaling, and rotation to an input B-spline. Note that the functions described in this paragraph have an interface that
allows multiple sets of control points, defining multiple B-splines, be input and evaluated at once. This is because my
implementation is designed for tracking contours using particle filtering.

I

References

[1] S. Buss.3-D Compute GraphicsCambridge University Press, New York, 2003.
[2] E. Demidov. An interactive introduction to splines website: http://www.ibiblio.org/e-notes/splines/intro.htm, 2004.

[3] T.Hastie, R. Tibshirani, and J. Friedmarhe Elements of Statistical Learnin§pringer Series in Statistics. Springer Verlag, Basel,
2001.

